in Fig. 5, with the dimensions

$$a_s = 4.27,$$
 $b_s = 5.39,$ $c_s = 2.55 \text{ Å}$
 $\alpha_s = 73.9,$ $\beta_s = 108.6,$ $\gamma_s = 119.6^{\circ}.$

The volume of the CH, group is 23.9 Å³.

The mean C–H bond distance in the subcell regions is 0.96 Å (σ =0.04 Å), where $\sigma = [\sum_{N} (X_N - \bar{X})^2 / (N-1)]^{1/2}$ and the average value of the angles involving hydrogen atoms in the same part of the molecule is 108° (σ =3°). The shortest H · · · H interatomic contacts are H₄ · · · H_B 2.89 (6) Å, H₄ · · · H_B (0,0, -1)* 2.77 (6) Å, H₄ · · · H_C 2.98 (4) Å, H₄ · · · H_C (0,0,1)* 2.88 (6) Å and H₄ · · · H_D (0,0,1)* 2.73 (9) Å. (The standard deviations are calculated with the formula given above.)

A Fourier difference map was calculated in the plane of the molecule. Even if it showed the expected pattern of positive electron density in the middle of every carbon-carbon bond arising from the valence electrons these peaks were less than three standard deviations above the background level.

I wish to thank Professor S. Abrahamsson for his advice throughout the analysis, Dr I. Pascher for growing the crystals, and Miss M. Ehrig and Mrs M. Innes for technical assistance. Financial support for the Crystallography Group was obtained from the Swedish Medical and the Swedish Natural Science Research Councils, the Swedish Board for Technical Development, the Tricentennial Fund of the Bank of Sweden and the U.S. Public Health Service (GM-11653).

* Subcell edge translation of the second atom.

Fig. 5. The idealized subcell viewed down c_s .

References

- ABRAHAMSSON, S. (1959a). Ark. Kem. 14, 49.
- ABRAHAMSSON, S. (1959b). Ark. Kem. 14, 65.
- ABRAHAMSSON, S., ALEBY, S., LARSSON, K., NILSSON, B., SELIN, K. & WESTERDAHL, A. (1965). Acta Chem. Scand. 19, 758.
- ABRAHAMSSON, S. & HARDING, M. (1966). Acta Cryst. 20, 377.
- Abrahamsson, S. & Lundén, B.-M. (1972). Acta Cryst. B28, 2562.
- HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen bonding in solids. New York: Benjamin.
- International Tables for X-ray Crystallography (1962). Vol. III, Birmingham: Kynoch Press.
- JENSEN, L. H. & MABIS, A. J. (1966). Acta Cryst. 21, 770.
- MILLS, O. S. & ROLLETT, J. S. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 107. Oxford: Pergamon Press.
- O'CONNELL, A. M. (1968). Acta Cryst. B24, 1399.
- O'CONNELL, A. M. & PASCHER, I. (1969). Acta Cryst. B25, 2553.
- STENHAGEN, E. & TÄGTSTRÖM-EKETORP, B. (1944). Ark. Kem. Min. Geol. 19A, No. 8.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W T. (1965). J. Chem. Phys. 42, 3175.

Acta Cryst. (1972). B28, 2562

The Crystal Structure of Isostearic Acid

BY SIXTEN ABRAHAMSSON AND BRITT-MARIE LUNDÉN

Crystallography Group, Swedish Medical Research Council Unit for Molecular Structure Analysis, University of Göteborg, Fack, S-400 33 Göteborg 33, Sweden

(Received 25 February 1972)

Crystals of isostearic acid, $C_{18}H_{36}O_2$, are triclinic (*P*T) with a=4.9356, b=5.6522, c=34.408 Å, $\alpha=95.22$, $\beta=95.21$ and $\gamma=103.62^{\circ}$. The molecules are, as is usual for long-chain fatty acids, held together by hydrogen bonds to dimers. The molecular packing is dominated by the space requirements of the methyl branches, which are accommodated between the ends of the carbon chains. The chain axes then become tilted 44° to the end group planes. The chain packing is of the common triclinic type T^{-1} .

The structures of branched-chain fatty acids have earlier been studied by this research group (Abrahamsson, 1959a; Abrahamsson & Harding, 1966). Two isoacids have so far been investigated by single-crystal methods. 17-Methyloctadecanoic acid (Abrahamsson, 1959b) had a superstructure of the carboxyl groups and was treated only in one projection. Isopalmitic acid was also studied only in projection (Stenhagen, Vand & Sim, 1952) and the reported structure is probably wrong as pointed out by Abrahamsson (1959b). It was, therefore, considered important to perform a three-dimensional single-crystal analysis of an ω -branched fatty acid.

Stenhagen, Vand & Sim (1952) reported that twinning was very common for isopalmitic acid crystals. We made several attempts to grow single crystals of isopalmitic acid but no suitable untwinned crystals for the X-ray work could be found. As isostearic acid gave good crystals and, judging from the cell dimensions, is structurally equivalent it was selected for the investigation.

Experimental

A sample of isostearic acid was kindly provided by Professor E. Stenhagen. Good crystals for the X-ray

work were grown from hexane in a temperature-programmable thermostat. The crystals grow as thin plates and melt at 68.2 °C.

Crystal data	
$C_{18}H_{36}O_2$	Isostearic acid (16-methylheptadecanoic acid)
Triclinic:	$ a = 4.9356 (29), b = 5.6522 (45), c = 34.408 (31) Å; \alpha = 95.22 (4), \beta = 95.21 (3), \gamma = 103.62 (3)^{\circ} $
U =	922·7 Å ³
Z =	2
$\varrho_c =$	1.016 g.cm ⁻³
$\lambda =$	1·54051 Å (Cu Kα ₁)

Table 1.	Observed	and	calculated	structure	factors	(×	100)

↑	
×	ĸ
L 210110232098765248642024501234567898761987654321014912480283223231975452134567914578123597210987531	L
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 2 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	FOBS
2 4.50 2 4.50 5 2.90 1 9.05 2 9.05 1 9.05 3 3.05 6 8.10 5 2.77 1 7.15 6 6.40 5 2.77 1 7.15 6 8.10 2 2.02.3 7 7.14 2 2.02.3 7 7.14 2 9.02.2 9 1.26.76 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 1.22.85 9 2.22.85 9 2.22.85 9 2.22.95 9 2.22.82	FCALC
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
***************************************	ĸ
L 024567890112345678019865436543654365436101345682601678943219876420320244567848643210982101234567890112345678011234567801123456780112357913	
$ \begin{array}{c} r\\ $	FCHS
3105 3105	FCALE
	-
* *************************************	×
L 7987654320987654321012345678901223491225677513456789023456790186541974210987654321567801134567867867867867854	ı
F0 8056 8766 5407 15207 75207 11201 75207 11201 75207 11201 75207 11201 75207 11201 75207 11201 75207 11201 75207 11201 75207 11201 75200 111007 75450 11201 75200 114007 75450 114007 75450 114007 75450 114007 75450 114007 75450 114007 75450 114007 75450 114007 75450 11407 75450 11407 75450 11407 75450 111007 72000 111007 72732 111007 72732 111007 72732 111007 72732 111007 72732 <td< td=""><td>FOHS</td></td<>	FOHS
************************************	FCALC
× ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
L 3213110987654202468023578876195215791468012964514865413453210975310987642101356543219765432101224567	
$ \begin{array}{c} f \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$	FORS
40/4 40/4 40/4 40/4 40/4 40/4 40/4 40/4 40/4 40/4 110/0 51/2 40/4 40/4 111/0 51/2 51/2<	FCALT
* *************************************	4
x	
L 8902468345676443219775320245678901131468902235643221097317654321024682467801283318765410976543210345790112	, i
$\begin{array}{c} r_{000} \\ r_{000} \\$	FORS
FLAL 7 19915 5 11005 6 12015 5 12015 5 12015 5 12015 5 12015 5 12015 5 12017 7 13015 5 10013 10 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11120 7 11110 7 11110 1007 111100 1007 1111100 1007 1111100 1007 1111100 1007 1111100 1007 1111100 10007 <td>f (4) (</td>	f (4) (
۰	
× 0000000111111111111111111111111111111	
F 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 9776 97777 9776 977777 9776 977777 9777777777 9776 9777777 97777777777777 9776 9712 9777777777777777777777777777777777777	
$ \begin{array}{c} L_{\rm C} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	

The space group was assumed to be $P\overline{1}$ which was confirmed by the structure analysis.

Reflexion data were collected on a Picker FACS I diffractometer using graphite-monochromated Cu Ka radiation. The crystal used had the dimensions $0.36 \times 0.11 \times 0.06$ mm. The $\theta/2\theta$ scanning mode was used with a scan speed of 1°/min. The background level was determined by 10 sec counts on each side of the reflexion. 1494 reflexions were measured with $2\theta \leq$ 85°. 814 of these were considered unobserved (I < 2σ).

The intensities were corrected for the Lorentz and polarization factors but not for absorption ($\mu = 4.92$ cm^{-1}) and extinction.

Structure refinement

The structure of 13-oxoisostearic acid had already been solved (Dahlén, 1972) when the reflexion data of isostearic acid were available. The cell dimensions of the oxo acid were very similar to those of isostearic acid, a = 4.93, b = 5.62, c = 34.46 Å, $\alpha = 95.65, \beta = 94.01, \gamma =$ 103.60°. The two structures were therefore supposed to be isotypical, which was also supported by the Patterson analysis. The coordinates of corresponding atoms in the oxoacid were used in a structure-factor calculation which gave an R value of 0.32. Four rounds of block-diagonal least-squares refinement reduced R to 0.17. The hydrogen atoms (except that on the hydroxyl oxygen atom) were then included in the structure-factor calculation at their calculated positions after verification from a difference synthesis that the methyl groups had the normal staggered conformation. The refinement was continued using the full matrix and anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were given isotropic temperature factors corresponding to those of the parent atoms. The B values were not varied.

Due to the relatively large number of parameters the hydrogen atoms and other atoms were refined separately in alternating cycles. After a few cycles a difference series was calculated in the plane of the carboxyl group. Positive density was found at the expected position of the hydroxyl hydrogen which was included in the following refinement. When the shifts for the nonhydrogen atoms were all less than 0.25σ the refinement was terminated. The hydrogen parameter shifts were then less than 0.60σ . The final R value was 0.066.

The form factors used were those given in International Tables for X-ray Crystallography (1962) except for hydrogen where the values of Stewart, Davidson & Simpson (1965) were used. All calculations were performed on a Datasaab D21-PDP15 dual computer system with programs developed at this institute (Abrahamsson, Aleby, Larsson, Nilsson, Selin & Westerdahl, 1965). The weight assigned to each observation in the least-squares refinement was (Mills & Rollett, 1961)

$$w = 1 / \left(1 + \left[\frac{|F_o| - 0.93 \cdot F_{\min}}{2.17 \cdot F_{\min}} \right]^2 \right).$$

Results

The final structure factors are given in Table 1 and the atomic parameters in Tables 2 and 3. The thermal ellipsoids are illustrated in Fig. 1.

Table 2. Fractional atomic coordinates and hydrogen atom isotropic thermal parameters

The estimated standard deviations are multiplied by 104 for C and O, and by 10³ for H. For the hydrogen atoms the first appended number refers to that of the parent atom.

	x	У	Ζ	В
O(1)	0.8785(21)	0.7467 (18)	0.0224(3)	
O(2)	1.3054 (19)	0.9873 (17)	0·0304 (2)	
Cũ	1.1181 (33)	0.7942(29)	0.0381(4)	
$\tilde{C}(2)$	1.2231 (23)	0.6560(22)	0.0676(3)	
C(3)	1.0018(21)	0.4663(20)	0.0822(3)	
C(4)	1.1350(21)	0.3519(20)	0.0022(3)	
C(5)	0.0217(22)	0.1605(21)	0.1321(3)	
C(5)	1.0507(20)	0.0440(19)	0.1654(3)	
C(0)	0.8402(10)	-0.1453(19)	0.1826(3)	
C(8)	0.0750(22)	-0.2574(20)	0.2162(3)	
C(0)	0.7722(21)	-0.2374(20) -0.4441(21)	0.2350(3)	
C(10)	0.0087(21)	-0.5518(21)	0.2550(3)	
C(10)	0.7061(20)	-0.7436(10)	0.2866(3)	
C(12)	0.8426(23)	-0.8485(21)	0.2000(3)	
C(12)	0.6360(23)	-0.0403(21) 1.0305(20)	0.3382(3)	
C(13)	0.0300(23) 0.7835(21)	= 1.1401 (20)	0.3715(3)	
C(14)	0.7833(21) 0.5833(20)	-1.1401(20)	0.3006(3)	
C(15)	0.3032(20)	-1.3220(20) 1.4277(22)	0.3900(3)	
C(10)	0.7134(23)	-1.4377(23)	0.4220(4)	
C(17)	0.5094(23)	-1.0307(23)	0.4383(4)	
C(18)	0.8000(29)	-1.2408(27)	0.4380(4)	
H(21)	1.376 (19)	0.590(17)	0.056(3)	6.2
H(22)	1.357 (16)	0.728(16)	0.085(2)	6.2
H(31)	0.883(20)	0.577(18)	0.092(3)	4.9
H(32)	0.8/2(17)	0.312(10)	0.053(3)	4.9
H(41)	1.284 (16)	0.257(15)	0.105(2)	5.2
H(42)	1.248 (16)	0.485(15)	0.138(2)	5.2
H(51)	0.773(17)	0.251(16)	0.138(2)	5.7
H(52)	0.856(15)	0.031(15)	0.116(2)	5.1
H(61)	1.208 (16)	-0.040(15)	0.155(2)	4.9
H(62)	1.141(16)	0.1/7(10)	0.189(2)	4.9
H(/1)	0.081(17)	-0.030(10)	0.199(2)	4.7
H(/2)	0.709(16)	-0.319(10)	0.104(2)	4.1
H(81)	1.122(14)	-0.330(14)	0.207(2)	5.2
H(82)	1.068 (16)	-0.122(15)	0.236(2)	2.2
H(91)	0.621(16)	-0.360(14)	0.245(2)	5.0
H(92)	0.080(17)	-0.5/2(17)	0.215(2)	5.0
H(101)	1.002(18)	-0.027(15)	0.237(2)	5.3
H(102)	1.003(10)	-0.414(13)	0.293(2)	5.5
H(111)	0.537(10)	-0.002(10)	0.290(2)	5.5
H(112)	0.380(10)	-0.879(14)	0.200(2)	5.4
H(121)	0.980(10)	-0.949(13)	0.307(2)	5.4
H(122)	0.930(17)	-0.700(10) 1.052(16)	0.340(2)	5.7
H(131)	0.402(18)	-1.033(10)	0.333(2)	5.7
H(132)	0.433(18)	-1.140(17)	0.322(3)	5.5
H(141)	0.973(10)	-1.100(10)	0.330(3)	5.5
H(142)	0.903(17)	-0.979(10) 1.222(17)	0.390(3)	5.5
H(151)	0.390(10)	-1.222(17)	0.399(3)	5.5
H(152)	0.437(10)	-1.438(13) 0.460(17)	0.370(2)	6.7
$\Pi(101)$ $\Pi(171)$	0.000(19)	-0.407(17) -1.730(17)	0.410(3)	8.0
$\Pi(1/1)$ $\Pi(172)$	0.373(19) 0.350(22)	-1.757(17) -1.550(21)	0.420(3)	8.0 8.0
$\Pi(1/2)$ $\Pi(172)$	0.505 (23)	= 1.337 (21) = 1.720 (16)	0.433(3)	8.0
H(1/3) H(191)	0.718(17)	= 1.113(10)	0.471(2)	8.Q
U(101)	0.004(19)	-1.105(17)	0.454(2)	8.9
H(102) H(182)	0.994(10) 0.037(20)	-0.318(18)	0.434(2) 0.484(3)	8.8
H(74)*	1.186 (20)	1.053 (20)	0.004(4)	7.7
*****	1 100 (20)			

* Refers to the oxygen atom O(2).

Fig. 1. Drawing of isostearic acid showing the thermal ellipsoids as viewed along the b axis.

Table 3. Anisotropic thermal parameters in the form $\exp\left[-2\pi^{2}(h^{2}a^{*2}U_{11}+k^{2}b^{*2}U_{22}+l^{2}c^{*2}U_{33}+2klb^{*}c^{*}U_{23}+2lha^{*}c^{*}U_{31}+hka^{*}b^{*}U_{12})\right]$

Standard deviations are given in parentheses.

All values have been multiplied by 104.

	U_{11}	U_{22}	U33	U_{23}	U_{31}	U_{12}
O(1)	757 (44)	1329 (63)	1057 (54)	608 (47)	51 (38)	272 (42)
O(2)	879 (50)	957 (60)	1087 (54)	485 (44)	73 (40)	151 (42)
C(1)	544 (64)	1110 (95)	733 (73)	271 (63)	283 (54)	141 (59)
C(2)	845 (73)	921 (91)	713 (72)	419 (62)	-28(57)	399 (63)
C(3)	695 (63)	544 (72)	639 (63)	351 (50)	144 (48)	252 (52)
C(4)	651 (64)	625 (75)	710 (70)	215 (54)	118 (52)	93 (53)
C(5)	758 (68)	700 (78)	723 (69)	383 (55)	17 (53)	193 (56)
C(6)	630 (63)	643 (72)	600 (64)	291 (51)	73 (49)	108 (51)
C(7)	555 (59)	637 (72)	611 (62)	296 (52)	86 (47)	134 (51)
C(8)	649 (64)	722 (81)	738 (68)	351 (58)	133 (52)	183 (55)
C(9)	681 (66)	651 (70)	579 (60)	207 (50)	47 (49)	159 (53)
C(10)	671 (65)	831 (78)	572 (62)	191 (53)	12 (48)	295 (56)
C(11)	742 (70)	601 (76)	762 (69)	130 (56)	137 (55)	38 (57)
C(12)	823 (69)	817 (79)	488 (59)	195 (52)	- 64 (49)	216 (58)
C(13)	1039 (77)	693 (78)	551 (63)	506 (53)	223 (54)	142 (58)
C(14)	727 (66)	672 (75)	716 (69)	519 (56)	114 (52)	-69 (54)
C(15)	733 (66)	756 (80)	636 (64)	353 (55)	- 80 (50)	239 (57)
C(16)	932 (76)	647 (80)	811 (77)	223 (59)	198 (60)	78 (59)
C(17)	993 (87)	992 (99)	1043 (88)	573 (73)	138 (68)	249 (70)
C(18)	1534 (108)	1030 (104)	827 (84)	384 (74)	- 188 (75)	86 (80)

Distances and angles are given in Fig. 2, where also the atomic numbering is indicated, and with standard deviations in Tables 3 and 4. The average C-C distance in the chain is 1.515 Å (σ =0.013 Å) and the average bond angle 113.3° (σ =0.69). They compare well with the values found in other long-chain structures. In 13oxoisostearic acid (Dahlén, 1972) they are 1.512 Å and 113.9°. Though the hydrogen refinement proceeded normally in general, a few long distances involving hydrogen are found. As expected the hydroxyl hydrogen did not refine well and an O-H distance of 1.16 Å resulted. Excluding five long C-H distances,

Fig. 2. Distances and angles of isostearic acid.

C(3)-H(32) = 1.15, C(7)-H(71) = 1.19, C(7)-H(72) = 1.16, C(14)-H(141) = 1.19, C(15)-H(151) = 1.21 Å; an average C-H value of 1.01 is found.

Table 4. Bond distances and angles for the non-hydrogen atoms

The estimated standard deviations for the distances are multiplied by 10³, for the angles by 10.

C(1) - O(1)	1·213 (10) Å	O(1) - C(1) - O(2)	120.7 (9)
C(1) - O(2)	1.318 (11)	O(1) - C(1) - C(2)	124.9 (8)
C(1) - C(2)	1.467 (14)	O(2) - C(1) - C(2)	114.4 (7)
C(2) - C(3)	1.496 (12)	C(1) - C(2) - C(3)	114.8 (7)
C(3) - C(4)	1.521 (13)	C(2) - C(3) - C(4)	109.5 (7)
C(4) - C(5)	1.524 (12)	C(3) - C(4) - C(5)	112.8 (7)
C(5) - C(6)	1.535 (13)	C(4) - C(5) - C(6)	113.8 (7)
C(6) - C(7)	1.510 (11)	C(5) - C(6) - C(7)	114.0 (7)
C(7) - C(8)	1.541 (13)	C(6) - C(7) - C(8)	112.7 (6)
C(8) - C(9)	1.512 (12)	C(7) - C(8) - C(9)	114.7 (7)
C(9) - C(10)	1.504 (13)	C(8) - C(9) - C(10)	113.9 (7)
C(10) - C(11)	1.529 (12)	C(9) - C(10) - C(11)	114.6 (7)
C(11) - C(12)	1.515 (13)	C(10)-C(11)-C(12)	114.6 (7)
C(12) - C(13)	1.523 (12)	C(11)-C(12)-C(13)	113.4 (7)
C(13) - C(14)	1.528 (13)	C(12)-C(13)-C(14)	111.4 (7)
C(14) - C(15)	1.491 (12)	C(13)-C(14)-C(15)	112.2 (7)
C(15) - C(16)	1.513 (14)	C(14)-C(15)-C(16)	115.3 (7)
C(16) - C(17)	1.507 (13)	C(15)-C(16)-C(17)	113.4 (8)
C(16) - C(18)	1.544 (13)	C(15)-C(16)-C(18)	111.8 (8)
		C(17)-C(16)-C(18)	107.7 (8)

The carbon chain is planar within 0.04 Å (Table 5). The zigzag plane forms an angle of 11.5° with the plane through the carboxyl group. This angle is 13° in 13-oxostearic acid. The molecules are held together to dimers over a centre of symmetry by hydrogen bonds. The $0 \cdot \cdot 0$ distance is 2.70 Å. The C- $0 \cdot \cdot 0$ angle is 115.7° . The two carboxyl groups of the dimer are coplanar with a maximum deviation from the plane of 0.007 Å. A detail of the polar group region is given in Fig. 3.

Fig. 3. Some packing contacts in the polar region of isostearic acid.

Fig. 4. Molecular packing of isostearic acid as seen along the *a* axis.

Fig. 5. Packing contacts in the methyl end-group planes.

Table 5. Least-squares planes in the molecule

The equations are expressed in terms of the crystal axes.

I - 0.08664X + 0.18833Y + 0.97828Z - 0.07954 = 0

II 0.09146X - 0.13092Y - 0.98716Z + 0.03948 = 0

Dev	viations		
	I		II
C(2)	0∙055 Å	C (1)	0·007 Å
C(3)	0.025	O(1)	-0.006
C(4)	-0.014	O(2)	-0.004
C(5)	-0.008	C(11)	-0.006
C(6)	-0.037	O(11)	0.004
C(7)	-0.022	O(21)	0.002
C(8)	-0.042		
C(9)	-0.005		
C(10)	-0.022		
C(11)	-0.003		
C(12)	0.000		
C(13)	0.017		
C(14)	0.016		
C(15)	0.077		
C(16)	0.022		
C(17)	-0.061		
C(1)*	0.203		
C(18)*	1.244		

* Atoms not included in the plane calculation.

The packing of the dimers is shown in Fig. 4. The molecules have to slide along the chain axes relative to each other so that the methyl end of one chain just reaches the branch of another molecule. The branches are then accommodated between the methyl ends of the chains. This is one common way of accommodating the branch in monomethyl-substituted fatty acids (Abrahamsson, 1959*a*). The chain axes form an angle of 44° with the end-group planes. The corresponding value for 13-oxoisostearic acid is 44° and for isopalmitic acid (Stenhagen, Vand & Sim, 1952) 45°. In the latter structure the methyl group is reported to be accommodated *in* the chain packing which from the analysis of 13-oxoisostearic acid and the present work must be considered in error.

Fig. 6. Idealized triclinic subcell $(T \parallel)$ of isostearic acid.

A packing detail of the methyl end group region is shown in Fig. 5. The $H \cdots H$ contacts agree very well with those in the oxo acid. The chains pack laterally in the common triclinic packing (T||) Abrahamsson, 1959a). The subcell dimensions are

$$a_s = 4.28,$$
 $b_s = 5.37,$ $c_s = 2.53$ Å,
 $\alpha_s = 72.3,$ $\beta_s = 108.8,$ $\gamma_s = 117.2^{\circ}.$

The corresponding dimensions for 13-oxoisostearic acid are

$$a_s = 4.27,$$
 $b_s = 5.39,$ $c_s = 2.55$ Å,
 $\alpha_s = 73.9,$ $\beta_s = 108.6,$ $\gamma_s = 119.6^{\circ}.$

The closest subcell contacts to H_A are 2.89 Å to H_B and 2.72 Å to H_B translated one c_s distance, 2.94 Å to H_c and 2.70 Å to H_c translated one c_s and finally 2.72 Å to H_D (Fig. 6).

The carbon chain in isostearic acid is more regular than that of 13-oxoisostearic acid. Therefore, there are large regions in reciprocal space with very weak reflexions. Thus, only 45% of the measured reflexions of isostearic acid are more than two standard deviations above background whereas in 13-oxoisostearic acid, which has a bent chain and contains one more oxygen atom, the corresponding figure is 83%.

We wish to thank Miss M. Ehrig for technical assistance. Financial support for the Crystallography Group was obtained from the Swedish Medical and the Swedish Natural Science Research Councils, the Swedish Board for Technical Development, the Tricentennial Fund of the Bank of Sweden and the U.S. Public Health Service (GM-11653).

References

- ABRAHAMSSON, S. (1959a). Ark. Kem. 14, 49.
- ABRAHAMSSON, S. (1959b). Ark. Kem. 12, 301.
- ABRAHAMSSON, S., ALEBY, S., LARSSON, K., NILSSON, B., SELIN, K. & WESTERDAHL, A. (1965). Acta Chem. Scand. 19, 758.
- ABRAHAMSSON, S. & HARDING, M. (1966). Acta Cryst. 20, 377.

DAHLÉN, B. (1972). Acta Cryst. 28, 2555.

- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- MILLS, O. S. & ROLLETT, J. S. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. p. 107. London: Pergamon Press.
- STENHAGEN, E., VAND, V. & SIM, A. (1952). Acta Cryst. 5, 695.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.

Acta Cryst. (1972). B28, 2567

The Crystal and Molecular Structure of Anhydrobromonitrocamphane

By G. L. DWIVEDI AND R. C. SRIVASTAVA

Department of Physics, Indian Institute of Technology, Kanpur-16, India

(Received 22 June 1971 and in revised form 12 November 1971)

Anhydrobromonitrocamphane crystals are orthorhombic, space group $P2_12_12_1$. The cell dimensions are a = 10.364, b = 9.408, c = 10.499 Å, Z = 4. The crystals decompose quite rapidly when exposed to the atmosphere and X-rays. This results in a falling off of intensity with time. A method for correcting the intensity data for the above mentioned effects has been developed and used in the present study. The crystal structure has been solved using the heavy-atom method. The structure is highly disordered so that each type of site is statistically occupied by two optically isomeric forms of the molecule in two orientations. The disorder gives rise to an approximate (100) mirror. The bromine atom and one carbon atom lie on this pseudomirror, while the nitrogen atom and all other carbon atoms are distributed over two positions and the other oxygen atom over four positions. Some atomic positions were very close to their disordered counterparts and could not be refined by routine least-squares analysis. The final refinement was therefore done by the difference Fourier method. The final R value was 0.097. Bond lengths and angles in both orientations of the molecule are normal.

Introduction

The sulphuric acid transformation of bromonitrocamphane to anhydrobromonitrocamphane has been considered very unusual and fascinating (Goto, Hirata & Stout, 1968; Ranganathan, 1967). The proposed reaction mechanism is also very uncommon as it involves the initial loss of the nitro group and its subsequent